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The excitation of large amplitude electron oscillations in a streaming cold plasma and the
minimum threshold of wave breaking in the resonant region are investigated analytically as a
function of flow velocity. The problem is reduced to the solution of a driven harmonic oscillator
with time varying eigenfrequency wy(t) in a self-consistent, stationary ion density profile. An
analytical solution is presented and applied to the correct wave breaking criterion in a streaming
plasma. Wave breaking sets in when the driver amplitude £4 obeys the inequality
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which shows that the threshold is proportional to the driver frequency w and to the flow velocity

at the resonance point, ve; however, it is independent of the density scale length. Resonance
ends at 7= n/2. The denominator assumes there the value 2.759. 7 is a dimensionless time which

measures the transit time of a volume element through resonance.

1. Introduction

In the critical region of an inhomogeneous plasma
the incident electromagnetic wave can resonantly
couple to an electrostatic wave. The classical treat-
ment of this resonance absorption has been given
in Ref. [1] in a linearized form for a plasma at rest.
The most complete treatment can be found in Ref.
11. A simplified nonlinear description of this process
for a cold plasma is feasible if the simplification of
the so called capacitor model is introduced: The
sinusoidal driver field Egqe—i®t is assumed to have
only a component in the direction of the density
gradient. In this case the oscillation amplitude
Ze(x,t) of the electrons is governed by the linear
equation (2)

d2xe 5 e B bt
E7+wp(z)xe—_7e aeior,
which is a good approximation even for large am-
plitudes x. because the plasma frequency wy=

(1)
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(Ze2no/egme)l/2 only depends on the ion density
ng(x). At the position wp= w the solution of (1) is
given by

e
—tEqe-iot,
2me

Ze(x, ) = —1 (2)
which shows that the amplitude grows linearly in
time. As a consequence wave breaking occurs [3].
In order to distinguish this braking mechanism
from particle kinetic effects [4], we call it hydro-
dynamic wave breaking. It is defined as the inter-
penetration of two volume elements of the fluid
under consideration. The mathematical criterion
for hydrodynamic breaking in a homogeneous

plasma with the ions at rest is [5]

e/l << — 1 (3)

in at least one point x.

According to (1) hydrodynamic wave breaking
occurs at arbitrarily small driver fields. However,
there are several damping mechanisms which intro-
duce a finite breaking threshold for Eq. Collisions
between electrons and ions can limit the indefinite
growth of e, but in laser produced plasmas the
collision frequency is generally too low to be ef-
fective. Another more effective threshold is repre-
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sented by temperature effects. At the moment of
breaking the electron density becomes infinite in
accordance with (3) and the thermal pressure
strongly reacts. Or, in other terms, a finite tempera-
ture forces the electrostatic oscillations to propagate
down the density gradient and to lead to a con-
tinuous flow of energy but of the resonance region,
which may limit the oscillation amplitude ze to a
finite value. This effect was studied in numerical
simulations as well as in simple analytical models
[6]. Other limitations on the indefinite growth of
Ze may be imposed by Landau damping [7], i.e.
particle acceleration, and by distortions of the ion
density profile ng due to light pressure. However,
no analytical treatment of these effects is available
as yet. The same holds for plasma convection. Many
plasmas show considerable flow velocity at the
critical point (wp = w), e.g. laser produced plasmas.
This has two effects on wave breaking. Firstly, a
volume element stays for only a restricted time in
the resonance region and, secondly, owing to the
rarefaction of the ion density, steepening of the elec-
tron wave is reduced.

In the following we present an analytical treat-
ment of the problem of wave breaking in a stream-
ing cold plasma. In Section 2 we formulate the
problem in terms of a driven harmonic oscillator
with time varying eigenfrequency. In Section 3 a
self-consistent, stationary density profile is deter-
mined and the oscillator equation is solved analy-
tically for it. Finally, in Section 4 the correct wave
breaking criterion for a streaming plasma is applied
and the minimum threshold for wave breaking is
derived. The calculated values of electromagnetic
wave intensities show that plasma convection leads
to appreciable intensities at which hydrodynamic
breaking sets in. However, it also appears that in
laser produced plasmas temperature effects may
represent a more effective damping mechanism.

2. Resonant Excitation of Electrostatic Oscillations
in a Streaming Plasma

We consider a layered medium, i.e. a plasma
with its density gradient in the z-direction only.
The plasma is fully ionized, the electrons are as-
sumed to follow an adiabatic equation of state, the
ion density and flow velocity are ng and vg, respec-
tively, and the electrons with density ne(z, t) are
assumed to move at speed u (z, t). The obliquely
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incident p-polarized electromagnetic wave reso-
nantly interacts with the electrostatic wave in a
small region around the critical point. Since the
magnetic field amplitude has a local maximum
there and since the variation of E at that point is
mainly in the direction of the gradient, the fol-
lowing approximations are justified:

V X B = (iky B, — 3BJox, 0)
=~ (iky B, 0,0), (4)
VE = 0E/0x + ikyEy =~ 0E,|oz, (5)

where k, is the wave vector component in the y-
direction, k, = ko sin ap and oy is the angle of inci-
dence from the vacuum. It has been shown in Ref. [8]
that the capacitor model represents an excellent
approximation for nonrelativistic intensities. With
these simplifications the corresponding Maxwell
equations read (£ = E;)

oF . e e
—aT_—_zky@B—f—Eneu—s—onoUo, (6)
o e

= (o —n). (7)

From these relations the total time derivative of E
is calculated as

dE OE B _
P "R
e
i (@) {u(2,t) — vo(,1)}. (8)
The equation of motion of the electrons is
du 82 Ome e
T T ne e me W

where se=(yekTc[me)l/2 represents the electron
sound speed. Taking the total time derivative of
this equation with the help of (8), we get

d2u d y e
aE T E % e

4% b Bt
——'Zm—ey (27,).

-+ w% {u(z, t) — vo(x,t)}

(10)

This equation is valid for arbitrarily large ampli-
tudes u and for non-stationary ion density profiles,
too, the only limitation being imposed by wave
breaking. The plasma frequency is determined by
the ion density,

w% = e2no(x, t)/eome ,
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which has to be taken at the instantaneous position
z of an oscillating electron. It is now convenient to
pass from Eulerian coordinates (z, t) to Lagrangean
ones (a, t); here a is the initial position z(a, 0)=a
of a volume element. It is assumed that in the very
overdense region (wp> w) it holds that ne=mno
because B is zero there. In the equilibrium state
the departure ne —ny is easily determined from the
electron momentum equation Vpe -+ nem 4 ene Eg
=0 and (7) applied to the static electric field Es.
— ne is the ponderomotive force density. For most
relevant cases me —ng is negligible. In regions of
Vpe+nemw =0, ne=mnp is exactly fulfilled. Intro-
ducing the relative electron flow velocity ve(a, t)
=u(a, t) —wvo(a, t), the actual positions of the ion
and electron fluid elements, starting from the same
initial position, are

t
xo(a,t) =a + fvo(a, t)de,
0 t
2(a,t) = wo(a,1) + [ve(a, 1) dt = 20(a, 1)
0
_'_ Te (a’ t) *
By means of these relations (10) transforms into the
equation
se(a, 0)
ot2 yn§ (a,0) Oa ot

+ 6012, {x (aa t)a t} (’Ue + AUO)

_ec? b B 020
- _
Y ot

a2nY

e (10a)
Awg is given by the difference Avg=wvo{z(a,t), t}
—wg(a, t). 1t is due to the fact that at time ¢ the ion
fluid element starting from point a is at position
xo(a, t), whereas the corresponding electron fluid
element has moved to position z(a, t). Before wave-
breaking this equation is exact; after it will change
because the current in (6) has to be calculated
differently.

In the following we treat the effect of plasma
motion on wave breaking. Therefore, in order to
simplify (10a) considerably, we assume a cold
plasma, i. e. se=0. The term containing a)g can be
approximated as follows:

w% {z(a,t),t}{ve(a,t) + Avo}
=~ wi{xo(a,t), t}ve(a,t)

as long as the electrons do not oscillate over too
Jarge an inhomogeneity region. The exact term

P. Mulser, H. Takabe, and K. Mima - Resonant Excitation of High Amplitude Oscillations

would generate all higher harmonics. But those are
not resonantly driven and can therefore be neglect-
ed. In addition, Ovg/0t=0 can be assumed. We
justify these assumptions in the last Section of the
paper, of course. The final equation now reads

02 .

5 Ve (a,t) 4+ wp (2o, t) ve(a, )

. ec? b B
= — 1 poe Y

e

(11)

with
ws (o, ) = e2ng(a, t)/eome,

where ng(a, t) means ng{xo(a, t), t}. The electrons
oscillate around the ion volume element of density
no(a, t) (oscillation center approximation). Since
the plasma is streaming, w, becomes time depen-
dent: A volume element streaming through the
resonance region starts with wp > o (o frequency
of the driver), reaches wp = w at the critical point
and then changes to wp << w owing to the rarefaction
of the plasma.

The phenomenon of hydrodynamic wave break-
ing takes place as soon as the transformation from
Eulerian to Lagrangean variables becomes multi-
valued. It can be shown that the necessary and
sufficient condition for this to occur is that the
inequality

no(a, 0)

t
—a--fve (a,t)dt = — —
ca 0 ’)’l()(a, t)

(12)

is fulfilled [9]. This criterion is invariant with re-
spect to a shift of the point ¢{=0. Introducing

2

ec -
v=0ve[d, A =—1 ky B

e

and assuming sinusoidal time variation of the
driver, B= Be-iot, we get the following equation of
a driven harmonic oscillator with time varying
eigenfrequency for the relative electron velocity:

02

w v(“; t) + 6()% (a,t) U(a, t): e—iot,

(13)
It is not possible to solve this equation analytically
for the general case. When v (a, t) oscillates only a
few times during resonance with its driver the
maximum amplitude depends very much on the
relative phase between e~i®t and v(a,t). But this
case is neither interesting in our context because v
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will remain small. In laser plasmas, for instance,
v oscillates many times when it is resonant, typi-
cally from 102 to 103 times. A WKB approximation
is then appropriate. The solution of the homo-
geneous part of (13) is given by

c+4+ . c— _.
v(a,t) =—55 etv@t) 4 o—ie@a)
5 /2 1/2 2
@p “p
¢

pla.t) = [wp(a,t)dt,
0

(14)

and consequently a solution of the inhomogeneous
equation is

11

3 e—i(wt—gv) . (1 )
v et | —n— 5

1/2 1/2

2wy wp

e—i(wH-(P)

= eiwj——”g—dt =:ivp — 3.

wp

For the special case of wp = wo = const solution (14)
reduces to the well-known solution for w == wo,

v = e](af — ),

and for the case of resonance (w = wyp) to

g t —iwot 1 g
P eTtootl] — ——1,
2 wo 2wot

which is nearly the smooth solution (2) because of
2wt > 1 in our case. In order to get the exact solu-
tion for this case also, the correct linear combina-
tion of (14) and (15) has to be taken. In the reso-
nance region |v| starts growing because the phase
wt— @ becomes stationary. Consequently, only v,
of (15) is important and v2 can be disregarded be-
cause |vz/v1| €1 is valid in very good approxima-
tion in the resonance region. The approximate solu-
tion of (13) we use in the following is therefore

t
7 /‘ e-—i(mt—qz)
v = e~ i® ——dt.
1/2 1/2
2 oy y wp

It also shows the correct behaviour v—0 for a
volume element when it is still far from the reso-
nance point (wp > ). Furthermore it is interesting
to note that, in contrast to the warm plasma case,
the oscillation frequency of a cold plasma slab
changes following w; adiabatically.

(16)

3. A Stationary Self-Consistent Ion Density Profile

Integral (16) is simplest to evaluate for wy linear
in time. In order to find reasonable behaviour of
wp in space, we imagine that a stationary self-
consistent density step due to rarefaction and the
ponderomotive force noz has already been estab-
lished. In general, formulation of this problem
would lead to a nonlinear integral equation. For wp
linear in time the correct profile ng (x) =ng (a, t) can
be determined in the following way.

From wp=w(1+ f(a) —at) with f(a) the spatial
variation to be determined it follows that (index ¢
indicates the resonance point)

np = ne(1 + f(a) — at)2
Ve

T (U f@) —at)?

and

Yo

The position z(a, t) of a volume element is given by

¢
z(a,t) =a + fvodt
0
B Ve {¥* 1 1
T @ —at 11 i@
and consequently v (z) depends on z:

1 2
Ve l—i—f(a)} ’

vp is stationary only if

o
Vo (T) = ve {— (x —a) +

1 owa 11
1+f(@) ve
holds. Taking the 4 sign, vo increases in the posi-
tive z-direction. With this choice we obtain the self-

consistent profiles

1
wp =0 [——— —qt),
1—*—-[0—0/
c
1 o
pla,t)=wt ———Et ; (17)
14 —a
c
n
nO(x)_ n: 2 = ; 2
(1—}—*15) (1 —|——a)
¢ Ve
= No (a: O) ) (18)



o \? o« \?
Vo () ———vc(l +v—x) = vc<1 -+ —a)
(4

Ve
=99 (a, 0). (19)
The scale length of n depends on « as follows:
1 ong |7 ax-+we
Eigy= ng Ox = 24
Ve
LO)=Lc=—. (20)
2a

With the same procedure self-consistent distribu-
tions for the case of constant accerleration vg=
f(a)+2pBot can be found:

v}/
“» = O T+ 4Boa)'E + 2 for}ir2
wvi?
@(a,t) = /3; {|(vs+ 4 Boa)/2 + 2ot |1/2
— o2+ 4 foali,
Ne
no(2) = Bo \I2°

vo(x) = (07 + 4 o)1

We evaluate (16) for the simpler case of w;, taken
from (17). With the following magnitudes

a wa\2
, 772(7> (t—1)),

L Ve + xa
92 \1/2 o \1/2 2w\ V2
di=(—) dy,mo=\| , == ;
(o) nm=(5) 0 =7
we get
. e—iot etn(m—v)
v(a,t) =1 (2a)/zd2 (1 27])1/2
7 ) 7
e~ in*
B o gl | (21)
o2pn\12 41>
=)
v

—"o
where 7 is the time a volume element takes to travel
from its initial position zg=a<<0 to the point of
resonance o (a, t)=0. Since v is a large quantity,

(2 o )1/2 ( ch )1/2 (koLc )1/2
}/ — = = 2 =— = 2 S ’
o Ve B

Ve
e o=

typically y =102, the denominators (1 —2#/y)1/2
are slowly varying quantities and are nearly unity
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around the resonance point 7 =0. The main contri-
bution to the amplitude |v| thus comes from the
integral around 7 = 0, where the phase is stationary:

1] .
1 e~ dy

o 2 \112 27 \12
(2 a)172 3/2 (1 _ _77) (1 _ _’L)
g Y

(22)

1 )
R e~
(2a)1/2 w3/2<1 _ _2_77_)

04

i.e. the time behaviour of the amplitude is mainly
determined by the value of the Fresnel integral
[e=""dn. Its absolute value is visualized as the
radius vector on the Cornu spiral [10] (see Figure 1).
The whole expression for | »| is represented in Fig. 2
as a function of wp. The slow increase of |v| out of
resonance (wp<<w) is due to the WKB term
(1 —2n/y)~1. The small ripples above resonance
(wp>w) in Fig. 2 can easily be explained: The
calculation starts at a finite time instead of — oo,
which means that in Fig. 1 the origin of the vector
lies in a point on the spiral curve and not at
7= — oo. The ratio » of the rates with which the
phases n(n —y) and %2 vary in (21) is given by

9] =

IR

[P L | ;
2y
Mn=T/2
057
-05 .
' 05
Vel
+-05
N=-TU/32

7
Fig. 1. The value of | [ e~in2dy | is the length of the vector
—o0

extending from the center of the lower Cornu spiral to a
point of the double spiral determined by the parameter 7,
which is proportional to the length of the arc, i.e. time.
Maximum growth occurs around the resonance =0. The

il
maximum ofl | ein2dy ‘ =2.074 is reached at n=1.53
(/2 =1.57).
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Fig. 2. Amplitude |v| according to formula (22) as a funec-
tion of wp varies from 2w to w/)2 during 102 oscillations.
Growth of |v| occurs around the resonance from 1.1w to
0.9 w. Afterwards the oscillator gets out of phase. The mod-
ulations decrease as t1/2 (or 71/2).

which shows that as soon as | 7| is less than y/10
the phase 7 (1 — ) changes at least four times more
rapidly than the exponent of the Fresnel integral.
In the resonance region | 7| < /2 for the reasonable
value y =100 is at least 30 everywhere. It thus
becomes apparent that it makes sense to define ex-
pression (22) as the usual amplitude of the oscilla-
tion.

The driving electric field £4 can be defined as
Eq=cBsinay. In addition, by setting wvq=
—teEq/mew = — A|w?, which is a linearized solu-
tion of (13) in vacuum (wp=0), (22) is written as

Ve Y i —in? ’
e e e d 23)
7| e ml-
Ya 2(1 _ _77> —ie
Y
E koL¢)1/2 no
:_e _ erlig ( 0 C) J-e_“]zdn“
(] —170

MeCw ' ﬂ3/2(1 __2_1)
/4

The multiplication factor due to the electron re-
sponse |ve/vq| in the resonance region is highest at
n=m2

Ve Y

— = 1.04 ;
v b 1—afy

The width A over which energy is coupled from the
driving field into the plasma oscillation is deter-
mined from the resonance width

An=n=(wa/2)12At
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and At= _fdx/v (x). The calculation yields for A4

1 A B \12
) |
1—(4/aLe? Le -7 (koLc) - 24

4. Criterion of Wave Breaking in a Streaming Cold
Plasma

In order to get the desired criterion for hydrody-
namic wave breaking as a function of driver fre-
quency o, incident intensity Iine, flow velocity ve
and scale length L., we have (I) to integrate
ve(a, t), (II) to take the maximum of |9/da fvedtl
and (III) to relate the driver field to Ijp and to the
most favourable angle of incidence. In this way the
lowest possible wave breaking threshold is deter-
mined.

Because of 7= (wa/2)12(t—7) and 7= —af
(ve + o) it holds for v from (21)

n
llza e
—f (m) a]”d’?
—1o
n
2 \12]  or . on
laml 75 | Ty,

0
One has v % ~ 0 since v is zero at — 79 < 0. We
also obtain

ot Ve
da  (ve+ aa)?

on Ve wo \M?
da  (vet+aa)2 \ 2 ’

>

and finally
¢

e {v—[— zyfvdn} (25)

%) Y= et war £
0

We now evaluate fvdn. Integrating v by parts, we
obtain the relation

0 v e—tot
= + (26)
2
oy 21 1 ——’7
V4 7’
e—twt
= Z‘}I’U 1 + 7 ©Qa\8
) i)
rd



214 P. Mulser, H. Takabe, and K. Mima * Resonant Excitation of High Amplitude Oscillations
The RHS can be approximated by iyv to the high precision of 1/y2 as long as 7 is not taken too far out
in the underdense region (e.g. 7 =y/3). Keeping in mind that the lower limit of integration can be
taken so far away from resonance (i.e. wj> »?) that the contribution to the integral from — oo to

—+ oo becomes arbitrarily small, one then obtains the following result:

e*ia)t

n
ptiy | vlp=——s—]1 , f,
S w2(1—7’7—> 5 +ill

e\t [
211y e (o2

7 ;g
e~

(27)

—no

From (12), (17), (25) and (27) and with w (1 — 2%/y) = wp the following condition for wave breaking is now

arrived at in a straightforward way:

n
- DY —iot A 1 i1 21 v in?
T e taaraiay )¢ s T\ ) 1t Ja=
—70

Since o} (a, 0) = w2v?/(ve+aa)? holds, inequality
(28) explicitely shows that our wave breaking
condition (12) does not depend on the initial posi-
tion of a volume element as soon as it is chosen well
above resonance, in accordance with physical
intuition.

Criterion (28) can still be simplified by considering
that wt changes much more rapidly than the other
quantities in the bracket. Therefore, instead of
looking at Re{ } it is perfectly equivalent to con-
sider the absolute value of this bracket. In addition,
if we limit # to the still large interval 7 < y/10,
(1 —27n/y)1/2 can be ignored and

|4] |1 i m et ; —in*q 1
= E—{—zne _j;oe n|>

(29)

or, equivalently,
1

. n .
3+ineT [emindy ‘

— 00

Vd
Ve

holds.

These formulae represent the desired, rigorous
criterion for wave breaking in a cold inhomogeneous
plasma which streams with velocity v, at the reso-
nance point. The absolute value of the Fresnel
integral reaches its maximum around 7 = /2. How-
ever, the absolute value in inequality (29) increases
monotonically with % as can be seen from Figure 3.
As a consequence, far out from resonance the thresh-
old of wave breaking is drastically lowered. For a
special set of parameters this behaviour is shown in
Figure 4: While the first density peak is still mo-
derate, the third spike has already broken. The

g an _ 0p(a,0)
2n/y)V?

wp(a,t)

physical reason for such behaviour is partly due to
the wavelength decrease of the electrostatic oscilla-
tions in the lower density region.

We are interested here in the wave breaking
threshold in the resonance region. We therefore
have to evaluate inequality (29) at n=x/2. There
are several reasons for this point. If we investigated
breaking in the lower density region, besides tem-
perature effects, damping would play a decisive
role. Breaking there depends on how geometrical
effects, damping and dispersion compete with each
other. On the other hand, although there is damp-
ing, it is reasonable to assume that the oscillation
amplitude will grow over the whole resonance width
/A because this is exactly the region where oscilla-
tions can be resonantly excited. In addition, break-

-2 = 0 1 2 3 4 5"
L 2

Fig. 3. The value of the denominator
7
D =|}+inein? | emintdy
— oo

is a monotonically increasing function of 7, i.e. time. At
n=m/2 the value D =2.759 is assumed.
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¢:0 4 6= Tne/ne
21 3T
X
} } + + h 1Y = 2t
-i\ 1 Le
-2‘. —__/r- U
4t ;
-1 0
o=m/2 Gf
2..
4 ' 1 e
3
44 :
-1 0
dsn by E o1 Tne/ne
YEq
2"/\ it
/ t + ; + / X 2+
-1 Z Y|-c
-2 SRR | K
-ht | —
-1 0
o-3n/2 41 E ¢-3m/2 [nelnc
2} / 3
! ' / " ' W% 2
-\ c
-24 1 U
-4 i
-1 0
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Fig. 4. LHS: Electrostatic wave around resonance point as a function of the Eulerian space coordinate at four different
times. RHS: The corresponding electron density. |vq/ve| = 0.16 was chosen. Breaking occurs in the third density spike.
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ing at the point = 7/2 can be neatly related to the simple model of [3] (see Section 5, b). At this point

inequality (29) reads

Va4 1
oy >*ﬁ“7/2“=0.3625
gt wery e
and
n/2
o S —in?
Ve o Vd Ve —J;oe dn

o

Va

Ve

(30)

o St
TT

;I
i 4

With the help of (24) the latter inequality can be expressed as a condition for the oscillation amplitude

Ze =10e[wp,
Ze 1 va || 72 B 0.748
) — —mtq ~0.12
A v | |1 > S — e — @i =°

2a[1 — (4]L)2) (1 - %)

i.e. breaking in the resonance region occurs when the oscillation amplitude reaches 1/10 of the resonance

width.

The minimum B-field amplitude for breaking at #» = 7/2 is

Bsinay > 0.36mew fle.

(31)

B now has to be related to the intensity of the driving wave. For koL¢ =1 the following formula for B is

accurate enough [11]:

R R o 1/2
Bsinog = Bine(1 — sin? ag)l/4 (?) (koLe)~1/2 = 5.16 ¥ 10—6(

where [Iinc]=W/cm2. B [Tesla] is given by B=

9.14 x 10-6. I}2 and o is the fraction of the reso-

nantly absorbed driver. At the optimum angle [11]
sin oo =2 0.71/(ko Le)1/3

it holds that x=~~0.5. By means of these relations
one obtains from (31)
Iinc > 32 X 10_13 6()2/32
koLe
[1 — 0.5/(ko Lc)?/3]1/2

(33)

This is the minimum intensity needed for wave
breaking under optimum conditions. Owing to
profile steepening by ponderomotive force kg Lec-
values between 10 and 2 have been measured [12].
Values of f = 10-3 are reasonable. In the case of a
neodymium laser with w =1.778 x 1015/s we obtain
the following threshold

Tipexg >1-1 X 1013 W/cm?,

B =103, koL.= 10,
Tine,xa > 22 x 1012 W/em2,
ﬂ = 10—3, kOLC = 2 .

0 Iine

k[] Lc

1/2
) (1 —sinZag)l/4,  (32)

The latter value represents a lower limit even under
ideal conditions of optimum angle and no damping
because 0=0.5 is valid for koLc =>2n. At lower
values of kgL., o is also reduced. It is therefore
convenient to keep ¢ as a parameter and to write
the criterion in the form (34)
[W/em?2].

Iinc > 16 X 10_13

The angular dependence only enters through ab-
sorption fraction ¢ and the weak -correction
[1 —0.5/(koLc)2/3]1/2. Without light pressure ko Le-
values of several 102 would easily be reached and the
intensity threshold would increase correspondingly.
Formulae (1) to (28) are valid for profiles ko Lc < 1
too. However, it generally becomes more difficult
to relate B to Bine in this case (see [11], PLF 25).

5. Discussion

In this section we point out some additional
physical aspects. Further we show that the approxi-
mations introduced in the former sections are con-
sistent.
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a) It is interesting to note that the functional
dependence in formula (31) can be obtained by a
simple consideration. According to (2) a volume
element at resonance gains the oscillation ampli-
tude ze(0, t)= —i(e/2mew)t Eqe—i®t, whereas the
amplitude of the adjacent element at position a is

Zze(a,t) = —

eiEAde—iw(lHl/vw) it =
Me M Ve Ve
because until time ¢ it has spent an a/ve longer
period in the resonance region. v, = c is the phase
velocity of the driver. From this we obtain

Gy _ _ g2 Bye—iet+alve)

da 2Me e

for the derivative of the exponential is negligible.
With the breaking condition |0ze/0a|>ng(a, 0)/
no(a, t)==1 the inequality results

Eq>2mewvcle,

which agrees exactly with the condition that
breaking occurs at =0 (see Figure 3).

This differs from the correct expression (31) by
the factor 5.5, i.e. this formula would give a 30
times higher threshold intensity for wave breaking
than eq. (31). It clearly shows that the phase dif-
ference of adjacent volume elements plays a
decisive role in the pheomenon of wave breaking.

b) In [3] the breaking time of a plasma at rest
was calculated to be (in our units and symbols)

2Leme )1/2

=2 —5—
b (chmoco

Thereby the phase shift out of resonance was also
taken into account. Therefore acceptable agree-
ment with our criterion (31) should be obtained if
tp is equated to the time ¢ = 7 (2/a )1/2 which is the
time for resonant excitation. In fact, we get in this
way the breaking condition

Bsinog > 2me w Bm2e

which differs from the correct criterion by a factor
of 1.8 only.

c¢) Equation (13) was obtained by introducing
the oscillation center approximation which consists
in substituting wf,(x(a, t),t) by w%(xo(a, t), t) in
(10a). A first order expansion of the exact term
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yields
wlz) (ZL' (a7 t): t) ('Ue + AUO)
9 dw? a’vo

= wy (%o, t) ve + haxo Ze Ve + wp axo — e

w? w i dw?
S T PP L. ) ¥ e
=~ w2 (w0, )(1 it e ax0> e

It shows that Avy results in a small correction of
wi(xo,t) by an amount B/(koLc), whereas the
second term generates all higher harmonics of wp.
A simple perturbation analysis of (10a) yields the
amplitude ratios

V2 ) aw?, 1 e

ve 6wl dmp 6 L’

v 3 7 dw? 3 x

3 3 p e— e (35)
V2 ~ 32 wy 029 32 Lc

When breaking occurs in the resonance region
|#e| =0.12 holds. On the other hand, formula (24)
tells us that for (8/koL¢)/2<<1/10, A is by at least a
factor of 2 smaller than L., so that the oscillation
center approximation is well justified.

d) Solution (16) holds as long as Owp/0f and
02wp/0t2 can be neglected, i.e. as long as the oscil-
lator undergoes enough oscillations (more than 5
for example) in the resonance region. The number
n of oscillations there is

o A4

mew gt = (koLolf) = .

So, y/2 expresses the resonant number of oscilla-
tions. It turns out again that (8/koLc)1/2<<C1/10 is
a sufficient condition for the validity of solution
(16), too. For f<1 all formulae derived in the
forgoing sections are correct for very steep density
gradients as soon as the denominator (1 — 2%/y)1/2
is included in the Fresnel integral.

e) The density ne(a, t) is easily calculated from

the mass conservation equation

e, t) =—=— (36)

3 g
1 —i——a;fvodt—FaRe(AJ‘vdt)
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From our special profile from Sect. 3 we calculate

Ve 1 1
z@t)=a+——|—m—————|,

o o4 - o
14+ —a—at 1+ -—a
Ve Ve
and
Oxg/Ca = 1 4 n¢(no(a, t) — no(a, 0))/ng(a, 0)
“no(a,t).

ze(a, t) and Oxe/0a are given by (25) and (27). The
electric field is calculated best from (9):

me [ Qvg N Qe
Blat)=—-" {at + ﬂ‘eaf}
Me 1 Vel ~
= o l{mmc—'m}“m”m

In Fig. 4 the electric field and density distributions
are shown as functions of the space coordinate for
the parameter |vq/ve| =0.16. According to (29) and
Fig. 3 this leads to wave breaking at n~3.5.
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