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The excitation of large amplitude electron oscillations in a streaming cold plasma and the 
minimum threshold of wave breaking in the resonant region are investigated analytically as a 
function of flow velocity. The problem is reduced to the solution of a driven harmonic oscillator 
with time varying eigenfrequency cop(<) in a self-consistent, stationary ion density profile. An 
analytical solution is presented and applied to the correct wave breaking criterion in a streaming 
plasma. Wave breaking sets in when the driver amplitude obeys the inequality 
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which shows that the threshold is proportional to the driver frequency co and to the flow velocity 
at the resonance point, vc; however, it is independent of the density scale length. Resonance 
ends at rj = jr/2. The denominator assumes there the value 2.759. rj is a dimensionless time which 
measures the transit time of a volume element through resonance. 

e 

I. Introduction 

In the critical region of an inhomogeneous plasma 
the incident electromagnetic wave can resonantly 
couple to an electrostatic wave. The classical treat-
ment of this resonance absorption has been given 
in Ref. [1] in a linearized form for a plasma at rest. 
The most complete treatment can be found in Ref. 
II. A simplified nonlinear description of this process 
for a cold plasma is feasible if the simplification of 
the so called capacitor model is introduced: The 
sinusoidal driver field E&e~iwt is assumed to have 
only a component in the direction of the density 
gradient. In this case the oscillation amplitude 
xe (x, t) of the electrons is governed by the linear 
equation (2) 

+ (*)*e = E^e~iwt, (1) 
at* y me 

which is a good approximation even for large am-
plitudes xe because the plasma frequency cop = 

* now: Inst. Angew. Physik, Technische Hochschule, 
D-6100 Darmstadt. 
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(Ze2no)come)1/2 only depends on the ion density 
UQ(X). At the position COP — CO the solution of (1) is 
given by 

xe(x,t) = — tEde-*»t, (2) 
2 rn e to 

which shows that the amplitude grows linearly in 
time. As a consequence wave breaking occurs [3]. 
In order to distinguish this braking mechanism 
from particle kinetic effects [4], we call it hydro-
dynamic wave breaking. It is defined as the inter-
penetration of two volume elements of the fluid 
under consideration. The mathematical criterion 
for hydrodynamic breaking in a homogeneous 
plasma with the ions at rest is [5] 

dxe/dx < - 1 (3) 

in at least one point x. 
According to (1) hydrodynamic wave breaking 

occurs at arbitrarily small driver fields. However, 
there are several damping mechanisms wrhich intro-
duce a finite breaking threshold for E&. Collisions 
between electrons and ions can limit the indefinite 
growth of xe, but in laser produced plasmas the 
collision frequency is generally too low to be ef-
fective. Another more effective threshold is repre-
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sented by temperature effects. At the moment of 
breaking the electron density becomes infinite in 
accordance with (3) and the thermal pressure 
strongly reacts. Or, in other terms, a finite tempera-
ture forces the electrostatic oscillations to propagate 
down the density gradient and to lead to a con-
tinuous flow of energy but of the resonance region, 
which may limit the oscillation amplitude xe to a 
finite value. This effect was studied in numerical 
simulations as well as in simple analytical models 
[6]. Other limitations on the indefinite growth of 
xe may be imposed by Landau damping [7], i.e. 
particle acceleration, and by distortions of the ion 
density profile no due to light pressure. However, 
no analytical treatment of these effects is available 
as yet. The same holds for plasma convection. Many 
plasmas show considerable flow velocity at the 
critical point (cop = co), e.g. laser produced plasmas. 
This has two effects on wave breaking. Firstly, a 
volume element stays for only a restricted time in 
the resonance region and, secondly, owing to the 
rarefaction of the ion density, steepening of the elec-
tron wave is reduced. 

In the following we present an analytical treat-
ment of the problem of wave breaking in a stream-
ing cold plasma. In Section 2 we formulate the 
problem in terms of a driven harmonic oscillator 
with time varying eigenfrequency. In Section 3 a 
self-consistent, stationary density profile is deter-
mined and the oscillator equation is solved analy-
tically for it. Finally, in Section 4 the correct wave 
breaking criterion for a streaming plasma is applied 
and the minimum threshold for wave breaking is 
derived. The calculated values of electromagnetic 
wave intensities show that plasma convection leads 
to appreciable intensities at which hydrodynamic 
breaking sets in. However, it also appears that in 
laser produced plasmas temperature effects may 
represent a more effective damping mechanism. 

2. Resonant Excitation of Electrostatic Oscillations 
in a Streaming Plasma 

We consider a layered medium, i.e. a plasma 
with its density gradient in the ar-direction only. 
The plasma is fully ionized, the electrons are as-
sumed to follow an adiabatic equation of state, the 
ion density and flow velocity are no and vo, respec-
tively, and the electrons with density ne (x, t) are 
assumed to move at speed u (x, t). The obliquely 

incident p-polarized electromagnetic wave reso-
nantly interacts with the electrostatic wave in a 
small region around the critical point. Since the 
magnetic field amplitude has a local maximum 
there and since the variation of E at that point is 
mainly in the direction of the gradient, the fol-
lowing approximations are justified: 

V x B = ( ik yB , — dB/dx,0) 
g^(ikyB,0,0), (4) 

V £ = dEx/dx -f ikyEy g^ dEx^x, (5) 

where ky is the wave vector component in the y-
direction, ky = ko sin ao and ao is the angle of inci-
dence from the vacuum. It has been shown in Ref. [8] 
that the capacitor model represents an excellent 
approximation for nonrelativistic intensities. With 
these simplifications the corresponding Maxwell 
equations read (E = Ex) 

8 E e e 
= ikyc2B -j- — neu —n o v o , (6) 

dt eo £0 

8 E e —— = — (n0 — ne) 
CX £Q 

(7) 

From these relations the total time derivative of E 
is calculated as 

dE 8 E 
= — 1- U • dt 81 

8 E 
dx = ic2kyB 

H Wo (») {u (x, t) — VO (x, t)} . 
£0 

The equation of motion of the electrons is 

du sp 8ne e ~TT = — E, dt ne cx me 

(8) 

(9) 

where s e =(y e kT e lm e ) 1 l 2 represents the electron 
sound speed. Taking the total time derivative of 
this equation with the help of (8), we get 

dne 
+ COp {u(x, t) — VO(X, t)} 

d2u 1 d 
S2 1 

dt2 1 dt nc 

ec2 
= — i — h me • kyB(x, t) (10) 

This equation is valid for arbitrarily large ampli-
tudes u and for non-stationary ion density profiles, 
too, the only limitation being imposed by wave 
breaking. The plasma frequency is determined by 
the ion density, 

cop = e2n0(x, t)le0me, 
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which has to be taken at the instantaneous position 
x of an oscillating electron. It is now convenient to 
pass from Eulerian coordinates (x, t) to Lagrangean 
ones (a, t); here a is the initial position x(a, 0) = a 
of a volume element. It is assumed that in the very 
overdense region (cop > co) it holds that ne = no 
because B is zero there. In the equilibrium state 
the departure ne—no is easily determined from the 
electron momentum equation ^pe J rne7i-JreneE s 

— 0 and (7) applied to the static electric field Es. 
— nejr is the ponderomotive force density. For most 
relevant cases ne — no is negligible. In regions of 
V^e + we7r=0, ne = no is exactly fulfilled. Intro-
ducing the relative electron flow velocity ve(a,t) 
= u(a, t)— VQ(CL, t), the actual positions of the ion 
and electron fluid elements, starting from the same 
initial position, are 

t 
xq (a,t) = a -j- f vo {a, t) dt, 

o t 
x (a, t) — xo (a, t) -f j" ve (a, t) d£ = xq (a, t) 

o 
+ xe{a, t). 

By means of these relations (10) transforms into the 
equation 

52 ê 
8f2 

st(a, 0) 8
2

< 

yn%(a, 0) dadt 
col{x(a,t),t}{ve + Av o) 

6 C 
me 

k„B dt2 (10a) 

Avo is given by the difference Avo — vo{x(a, t), t) 
— vo (a, t). It is due to the fact that at time t the ion 
fluid element starting from point a is at position 
xo(a,t), whereas the corresponding electron fluid 
element has moved to position # (a, t). Before wave-
breaking this equation is exact; after it will change 
because the current in (6) has to be calculated 
differently. 

In the following we treat the effect of plasma 
motion on wave breaking. Therefore, in order to 
simplify (10 a) considerably, we assume a cold 
plasma, i. e. se = 0. The term containing (Op can be 
approximated as follows: 

co%{x(a, t),t}{ve{a,t) + Av0} 
{x0(a, t),t}ve (a, t) 

as long as the electrons do not oscillate over too 
large an inhomogeneity region. The exact term 

would generate all higher harmonics. But those are 
not resonantly driven and can therefore be neglect-
ed. In addition, 6ro/ö£ = 0 can be assumed. We 
justify these assumptions in the last Section of the 
paper, of course. The final equation now reads 

e2 

e*2 
ve(a, t) + oo-(x0,t)ve(a, t) 

ec-2 

i ky B 
mP 

(11) 

with 

a>p (x0, t) = e2 n0 {a, t)leo me, 

where no{a, t) means no{xo{a, t), t}. The electrons 
oscillate around the ion volume element of density 
no(a,t) (oscillation center approximation). Since 
the plasma is streaming, cop becomes time depen-
dent: A volume element streaming through the 
resonance region starts with cop co (co frequency 
of the driver), reaches cop = co at the critical point 
and then changes to cop < OJ owing to the rarefaction 
of the plasma. 

The phenomenon of hydrodynamic wave break-
ing takes place as soon as the transformation from 
Eulerian to Lagrangean variables becomes multi-
valued. It can be shown that the necessary and 
sufficient condition for this to occur is that the 
inequality 

8 
ca 

J ve {a, t) dt ^ no (a, 0) 
n0 (a, t) (12) 

is fulfilled [9]. This criterion is invariant with re-
spect to a shift of the point £ = 0. Introducing 

ec2 

v = veIA,A — — i ky B me 

and assuming sinusoidal time variation of the 
driver, B = Be~i(0t, we get the following equation of 
a driven harmonic oscillator with time varying 
eigenfrequency for the relative electron velocity: 

82 

"ßf2 
v (a, t) + col (a>l)v (a' 0 = e~imt- (13) 

It is not possible to solve this equation analytically 
for the general case. When v(a, t) oscillates only a 
few times during resonance with its driver the 
maximum amplitude depends very much on the 
relative phase between e~icot and v(a, t). But this 
case is neither interesting in our context because v 
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will remain small. In laser plasmas, for instance, 
v oscillates many times when it is resonant, typi-
cally from 102 to 103 times. A W K B approximation 
is then appropriate. The solution of the homo-
geneous part of (13) is given by 

(J ! (J 
V(a, t) = + —l75- e-W«.0 , 

< «p 
t 

cp (a, t) = J cop (a, t) df, (14) 
o 

and consequently a solution of the inhomogeneous 
equation is 

( 1 
i r 

V = 
2 < 

e-i<p 
co 

0 
1/2 
P 

dt (15) 

g-i(cot+<p) 

CO - d n = : v\ — vz • 

3. A Stationary Self-Consistent Ion Density Profile 

Integral (16) is simplest to evaluate for cop linear 
in time. In order to find reasonable behaviour of 
cop in space, we imagine that a stationary self-
consistent density step due to rarefaction and the 
ponderomotive force n§n has already been estab-
lished. In general, formulation of this problem 
would lead to a nonlinear integral equation. For cop 

linear in time the correct profile no(x) = no (a, t) can 
be determined in the following way. 

From cop = co (1 + f (a) — cut) with j(a) the spatial 
variation to be determined it follows that (index c 
indicates the resonance point) 

= nc(\ +/(«) — a t)2 and 

vo 
vc 

(1 +/(a) — a O
2 

The position x(a, t) of a volume element is given by 

For the special case of a>p = coo = const solution (14) 
reduces to the well-known solution for co 4= coo, 

v = eia)tl(col — co2), 

and for the case of resonance (co = coo) to 

i . , i 
— te~l(° »«a——— 2 OJQ 2 coot 

which is nearly the smooth solution (2) because of 
2cot > 1 in our case. In order to get the exact solu-
tion for this case also, the correct linear combina-
tion of (14) and (15) has to be taken. In the reso-
nance region |v| starts growing because the phase 
cot — cp becomes stationary. Consequently, only v, 
of (15) is important and vz can be disregarded be-
cause | vz/vi | 1 is valid in very good approxima-
tion in the resonance region. The approximate solu-
tion of (13) we use in the following is therefore 

v = 2 cof 
e-iqp 

e-i(a>t-<p) 

CO 
dt. (16) 

It also shows the correct behaviour for a 
volume element when it is still far from the reso-
nance point (cop > co). Furthermore it is interesting 
to note that, in contrast to the warm plasma case, 
the oscillation frequency of a cold plasma slab 
changes following cop adiabatically. 

x (a, t) = a - f - J vo d£ 
o 

= a + 
ve 1 1 
a l + / ( a ) - a * ! + / ( « ) 

and consequently vo (x) depends on x: 

( a 1 )2 

Vo is stationary only if 

1 a a 
1 +/(a) vc 

= ± 1 

holds. Taking the + sign, vo increases in the posi-
tive ^-direction. With this choice we obtain the self-
consistent profiles 

1 
CO n = CO 

cp(a,t) = cot 

no(x) = 

(17) 

nc n c 
a 

1 -f — x 
VC 

a ^ 
1 + — a 

vc I 
= no (a, 0), (18) 
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vo (a?) = vc (1 + —X = vc 1 + — a 
vc 

= vo(a, 0). (19) 

The scale length of no depends on a as follows: 

L(x) = 
1 
no dx 

vc 

CHX + VC 

2a 

L (0) = Lc = 
2a 

(20) 

With the same procedure self-consistent distribu-
tions for the case of constant acceleration i>o = 
/ (a) -f- 2 ßo t can be found: 

,1/2 

(OR, = CO 
{(v* + 4ßoa)V* + 2ß0t}V* ' 

<p(a,t) = 

no{x) 

0) v 1/2 

ßo 
{\(vl + 4ßoa)VZ + 2ßot\W 

nc 

1 + 4 ßo 1/2 5 

vo(x) = (i% + 4:ßox)W. 

We evaluate (16) for the simpler case of a>p taken 
from (17). With the following magnitudes 

d/ = 

vc + a a 

2 \ l '2 

COCC 

V 

drj, rjo = 

co a\1/2 

T V 
co a \ 1/2 2co\ 

T, 
/ V a / 

we get 

v (a, t) = i 

2 co \1/2 
y = I I = 2 

VC 

c 

coLo \1/2 

Vc I 

1/2 

typically y > 102, the denominators (1 — 2r\\y)1^ 
are slowly varying quantities and are nearly unity 

around the resonance point rj = 0. The main contri-
bution to the amplitude | v \ thus comes from the 
integral around rj = 0, where the phase is stationary: 

v 
1 (* e-^2d ri 

,vi = 
(2 a)1/2 co3/2 1 -

V 

(2a)1/2C03/2^l -

1/2 

1 -
2 rj 

r 

,1/2 

\Se~i»*dV\, (22) 

(21) 

where x is the time a volume element takes to travel 
from its initial position a;0 = a < 0 to the point of 
resonance (a, 0 = 0. Since y is a large quantity, 

i.e. the time behaviour of the amplitude is mainly 
determined by the value of the Fresnel integral 
j e~lr,2drj. Its absolute value is visualized as the 
radius vector on the Cornu spiral [10] (see Figure 1). 
The whole expression for | v \ is represented in Fig. 2 
as a function of cop. The slow increase of | v | out of 
resonance (cop<co) is due to the WKB term 
(1—2 rjly)*1. The small ripples above resonance 
(cop>co) in Fig. 2 can easily be explained: The 
calculation starts at a finite time instead of — oo, 
which means that in Fig. 1 the origin of the vector 
lies in a point on the spiral curve and not at 
rj = — oo. The ratio x of the rates with which the 
phases rj(rj — y) and rj2 vary in (21) is given by 

Y 
2 rj 1 

0.5-

- 0 . 5 

/ IV.l/X 

T|=-TC/2 

/ 0 5 

- -0 .5 

Fig. 1. The value of J e-i"2d rj is the length of the vector 

extending from the center of the lower Cornu spiral to a 
point of the double spiral determined by the parameter rj, 
which is proportional to the length of the arc, i.e. time. 
Maximum growth occurs around the resonance rj = 0. The 

v. 
^ 2.074 is reached at jj = 1.53 maximum of 

(jt/2 = 1.57). 

j e~i?i2dr] 
— oo 
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Fig. 2. Amplitude | v | according to formula (22) as a func-
tion of ojp varies from j/2<y to to/1/2 during 102 oscillations. 
Growth of |w| occurs around the resonance from 1.1 co to 
0.9 co. Afterwards the oscillator gets out of phase. The mod-
ulations decrease as 11I2 (or rj1/2). 

which shows that as soon as is less than y/10 
the phase rj{fj — y) changes at least four times more 
rapidly than the exponent of the Fresnel integral. 
In the resonance region | rj | < n/2 for the reasonable 
value y = 100% is at least 30 everywhere. It thus 
becomes apparent that it makes sense to define ex-
pression (22) as the usual amplitude of the oscilla-
tion. 

The driving electric field can be defined as 
1 = sin ao • In addition, by setting Vd = 
— ieEdlme(o= —A/co2, which is a linearized solu-
tion of (13) in vacuum (cop = 0), (22) is written as 

Ve 
Vd 

Ve 

2 1 -

vc 

•Ed 

Je-^d rj 

( W c ) 1 ' 2 

(23) 

m e C C 0 ßwli-^L 
fe-Wdrj 

The multiplication factor due to the electron re-
sponse | ve/vd | in the resonance region is highest at 
rj^Ji/2 

Ve y 
= 1.04 . 7 . 

Vd 1 — n\y 

The width A over which energy is coupled from the 
driving field into the plasma oscillation is deter-
mined from the resonance width 

Arj = n={(o<xl2)1l2At 

and At = jdx/v(x). The calculation yields for A 

1 A _ / ß \1'2 

1 - (A/4:LC)2 Lc 
— 9' 

JCQLC 
(24) 

4. Criterion of Wave Breaking in a Streaming Cold 
Plasma 

In order to get the desired criterion for hydrody-
namic wave breaking as a function of driver fre-
quency co, incident intensity Iin c , flow velocity vc 

and scale length Lc, we have (I) to integrate 
ve(a, t), (II) to take the maximum of | 8/8« Jved*| 
and (III) to relate the driver field to Iinc and to the 
most favourable angle of incidence. In this way the 
lowest possible wave breaking threshold is deter-
mined. 

Because of rj = (coa/2)i/2(£ — r) and r = — a / 
(vc + aa) it holds for v from (21) 

t 
8 
8 a 

0 -rj0 

2 V'2 I 8r / 8rj 

r ( 2 V'2 8 r 
J V d t = { M ) 8 a j v d r i 

\ — ICO — 

COCK. J OA 

ctyo 

v drj -j- v -g— 

One has v —— ^ 0 since v is zero at ca 
also obtain 

rjo 4 0. We 

8r _ 
8 a 

drj 
8 a 

and finally 

vc 

(ve + cca)c' 

(vc + a a)2 

coa 
2 

1/2 

8 f vc 
Vd t= . ° 

8a J (vc + a a)-3 

o 

v iy jvdrjl. (25) 

We now evaluate j vdrj. Integrating v by parts, we 
obtain the relation 

i-imt 

CO' 2 1 -
(26) 

= iyv I 1 
3 i g-iwt 

2 1 - CO< 2 I 1 
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The RHS can be approximated by iyv to the high precision of 1/y2 as long as rj is not taken too far out 
in the underdense region (e.g. rjt^yl3). Keeping in mind that the lower limit of integration can be 
taken so far away from resonance (i.e. cop > co2) that the contribution to the integral from — oo to 
+ oo becomes arbitrarily small, one then obtains the following result: 

v + i y J vdtj = 
Q-ia>t 

2 1 -
2 rj 

y 

1 / 2 rj \1/2 
_ + j y e 1/2 d ^ (27) 

From (12), (17), (25) and (27) and with co (1 —2rj/y) = cop the following condition for wave breaking is now 
arrived at in a straightforward way: 

2 r?\1/2 . . } e~ir>2 _ \ | C0p(a, 0) vc 

(vc + aa)2co2(M) f ^ 2 + i [ l y rje" (1 -2rjly)1'2 drj Ü < coz (a, 0 

Since co2(a, 0) = co2v2/(vc + aa)2 holds, inequality 
(28) explicitely shows that our wave breaking 
condition (12) does not depend on the initial posi-
tion of a volume element as soon as it is chosen well 
above resonance, in accordance with physical 
intuition. 

Criterion (28) can still be simplified by considering 
that cot changes much more rapidly than the other 
quantities in the bracket. Therefore, instead of 
looking at } it is perfectly equivalent to con-
sider the absolute value of this bracket. In addition, 
if we limit rj to the still large interval rj <yj 10, 
(1 —2 rj/y)1/2, can be ignored and 

A | 1 * 
+ irjeir>2 je-Wdrj >1 

CO Vq 
(29) 

or, equivalently, 

va 
vc 

> 
-F irjeir>* j e~ir>2 drj 

holds. 
These formulae represent the desired, rigorous 

criterion for wave breaking in a cold inhomogeneous 
plasma which streams with velocity vc at the reso-
nance point. The absolute value of the Fresnel 
integral reaches its maximum around rj = n\2. How-
ever, the absolute value in inequality (29) increases 
monotonically with rj as can be seen from Figure 3. 
As a consequence, far out from resonance the thresh-
old of wave breaking is drastically lowered. For a 
special set of parameters this behaviour is shown in 
Figure 4: While the first density peak is still mo-
derate, the third spike has already broken. The 

physical reason for such behaviour is partly due to 
the wavelength decrease of the electrostatic oscilla-
tions in the lower density region. 

We are interested here in the wave breaking 
threshold in the resonance region. We therefore 
have to evaluate inequality (29) at ^ = There 
are several reasons for this point. If we investigated 
breaking in the lower density region, besides tem-
perature effects, damping would play a decisive 
role. Breaking there depends on how geometrical 
effects, damping and dispersion compete with each 
other. On the other hand, although there is damp-
ing, it is reasonable to assume that the oscillation 
amplitude will grow over the whole resonance width 
A because this is exactly the region where oscilla-
tions can be resonantly excited. In addition, break-

8 
D 

6 

4 

2 -

-2 1 0 1 2 3 4 5 

Fig. 3. The value of the denominator 

D = 1 iqeir,2 j e-iv*drj 

is a monotonically increasing function of r], i.e. time. At 
77 — rz/2 the value D = 2.759 is assumed. 



P. Mulser, H. Takabe, and K. Mima • Resonant Excitation of High Amplitude Oscillations 215 

Fig. 4. LHS: Electrostatic wave around resonance point as a function of the Eulerian space coordinate at four different 
times. RHS: The corresponding electron density. | t'd/t'c | = 0.16 was chosen. Breaking occurs in the third density spike. 
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ing at the point rj = nj2 can be neatly related to the simple model of [3] (see Section 5, b). At this point 
inequality (29) reads 

va 1 
= 0.3625 (30) 

v c 

> 71 w/2 

- + J e~ir>2drj 

and 

Ve Ve Vd 
Vc Vd Vc 

v 
71 

2 ( 1 — — 
y 

n/2 
J e~ir>2drj Vd 

v c 

> 0.374 
1 

With the help of (24) the latter inequality can be expressed as a condition for the oscillation amplitude 
Xe = iVel(Dp , 

xe 1 

2 TT [1 — (A/Lc)2] (1 

Vd 
vc 

jz/2 

j e~ir>2drj > 
0.748 

2TZ(1 — 7ily)2[l — (A/Lc)2] 
0 . 1 2 

i.e. breaking in the resonance region occurs when the oscillation amplitude reaches 1/10 of the resonance 
width. 

The minimum _B-field amplitude for breaking at rj = n\2 is 

B sin ao > 0.36 me co ßje. (31) 

ß now has to be related to the intensity of the driving wave. For koLc> 1 the following formula for B is 
accurate enough [11]: 

/<r\1/2 [olincV12 
£sina 0 = ß i n c U - s i n S a o M — (hLc) ' 1 ' 2 = 5.16 X 10-6 ( - j ^ H (1 - sin2 ao)1/4, (32) 

where [/inc] = W/cm2. B [Tesla] is given by B = 
9.14 X lO-6. ilH and a is the fraction of the reso-
nantly absorbed driver. At the optimum angle [11] 

sinao^0.71/(&o£c)1/3 

it holds that x ̂ 0 .5. By means of these relations 
one obtains from (31) 

/inc > 3 . 2 X 10-13co2 ß2 

koLc 

[1 - 0.5/(&o£c)2/3F2 ' ( 3 3 ) 

This is the minimum intensity needed for wave 
breaking under optimum conditions. Owing to 
profile steepening by ponderomotive force ko de-
values between 10 and 2 have been measured [12]. 
Values of ß > 10~3 are reasonable. In the case of a 
neodymium laser with co = 1.778 x 1015/s we obtain 
the following threshold 

/INCIND > 1 • 1 X 1013 W/cm2, 

ß = 10~3, k0Lc = 10, 

W d > 2 - 2 x 1012W/cm2, 
^=10-3, k0Lc = 2. 

The latter value represents a lower limit even under 
ideal conditions of optimum angle and no damping 
because <7 = 0.5 is valid for koLc> 2TZ. At lower 
values of koLc, a is also reduced. It is therefore 
convenient to keep a as a parameter and to write 
the criterion in the form 

(34) 
co2ß2k0Lc 

/,„c > 1.6 X 10-» _ _ J ! _ _ _ [W/cm2]. 

The angular dependence only enters through ab-
sorption fraction a and the weak correction 
[1-0.5/(&0£C)2/3]1/2. Without light pressure /^de-
values of several 102 would easily be reached and the 
intensity threshold would increase correspondingly. 
Formulae (1) to (28) are valid for profiles koLc 1 
too. However, it generally becomes more difficult 
to relate B to Binc in this case (see [11], PLF 25). 

5. Discussion 

In this section we point out some additional 
physical aspects. Further we show that the approxi-
mations introduced in the former sections are con-
sistent. 
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a) It is interesting to note that the functional 
dependence in formula (31) can be obtained by a 
simple consideration. According to (2) a volume 
element at resonance gains the oscillation ampli-
tude xe(0, t)— —i(el2mea>)tEae~i(ot, whereas the 
amplitude of the adjacent element at position a is 

xe(a, t) — — i-
m e co vc 

E(\ ß-ivV+alVv) . ( l 
a 

vc 

because until time t it has spent an a/vc longer 
period in the resonance region, v ^ ^ c is the phase 
velocity of the driver. From this we obtain 

dxe 

da 2 me co vc 
Ede — ia>(t + alv<p) 

for the derivative of the exponential is negligible. 
With the breaking condition | dxe/da\ >no(a, 0)/ 
no(a, £) = 1 the inequality results 

> 2 mecovcle , 

A v h i c h agrees exactly with the condition that 
breaking occurs at rj = 0 (see Figure 3). 

This differs from the correct expression (31) by 
the factor 5.5, i.e. this formula would give a 30 
times higher threshold intensity for wave breaking 
than eq. (31). It clearly shows that the phase dif-
ference of adjacent volume elements plays a 
decisive role in the pheomenon of wave breaking. 

b) In [3] the breaking time of a plasma at rest 
was calculated to be (in our units and symbols) 

h = 2 
2 Lcme V 2 

cB sin ao 

Thereby the phase shift out of resonance was also 
taken into account. Therefore acceptable agree-
ment with our criterion (31) should be obtained if 
tb is equated to the time t = n (2/aco)1/2 which is the 
time for resonant excitation. In fact, we get in this 
way the breaking condition 

B sin ao > 2 me co ß\n2 e 

which differs from the correct criterion by a factor 
of 1.8 only. 

c) Equation (13) was obtained by introducing 
the oscillation center approximation which consists 
in substituting col{x(a, t), t) by cop(xo(a, t), t) in 
(10 a). A first order expansion of the exact term 

yields 

A>L(X(a, t),t)(ve + AVQ) 

= col (x0 ,t)ve + 
da>; 8v0 
— XE VE + COP — XE 

^ COp (xo, t) 1 — i 
co" Vc 

Scop 
0̂ 0 

Scol 
COp dxo 

It shows that Avo results in a small correction of 
<x>l(xo,t) by an amount ßl(koLc), whereas th© 
second term generates all higher harmonics of cop. 
A simple perturbation analysis of (10 a) yields the 
amplitude ratios 

Ve 

V3 
V-2 32 col 

0COp 
Szo 

Xe 

3 
32 

Xe 
Lo 

(35) 

When breaking occurs in the resonance region 
|xe| =0.12 holds. On the other hand, formula (24) 
tells us that for ( ^ 0 ^ c ) 1 / 2 < 1/10, A is by at least a 
factor of 2 smaller than Lc, so that the oscillation 
center approximation is well justified. 

d) Solution (16) holds as long as 8cô /dt and 
82cop/8 2̂ can be neglected, i.e. as long as the oscil-
lator undergoes enough oscillations (more than 5 
for example) in the resonance region. The number 
n of oscillations there is 

So, yl2 expresses the resonant number of oscilla-
tions. It turns out again that (ßlkoLc)1/2< 1/10 is 
a sufficient condition for the validity of solution 
(16), too. For all formulae derived in the 
forgoing sections are correct for very steep density 
gradients as soon as the denominator (1 — 2 r ] / y ) 1 l 2 

is included in the Fresnel integral. 

e) The density ne {a, t) is easily calculated from 
the mass conservation equation 

ne(a, t) 
dx0 

8 a 

n0{a,0) 

+ 9ie 
1 6xe \ 

V d a J 
no(a, 0) 

(36) 

1 + ya J vo dt + — Re (A f v dt) 
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From our special profile from Sect. 3 we calculate f) In the case of laser produced plasmas a linear 
treatment of resonance absorption in a warm plas-
ma shows that hydrodynamic flow becomes im-
portant in the resonance region as soon as the fol-
lowing condition is fulfilled [13] 

Vc 1 1 
a j 1 -

a a. a j 1 - a ~ xt 1 -f- — 
Vc 

and 

dxo/da = 1 + nc(n0{a, t) — n0(a, 0))/??0(a, 0) 

• n0 (a, t). 

xe(a, t) and dxe/da are given by (25) and (27). The 
electric field is calculated best from (9): 

E{a,t) = — 

co I A 
ra€ 

e 

me [ 8v0 

dt 
1 

Me 

a/2Lc 

dve 

dt 
vct 
2LC 

t) 

In Fig. 4 the electric field and density distributions 
are shown as functions of the space coordinate for 
the parameter | va/vc | =0.16. According to (29) and 
Fig. 3 this leads to wave breaking at r j ^ 3.5. 

~(koLcjß)VH > 1, s p (37) 

where 

£ = ( W 2 ^c)1/3 hr + £ 
\ se 

is the dimensionless variable of the related inhomo-
geneous Stokes equation in which flow is included, 

d2w — e-imt -i(Vclse)(koLclßyi3e 
d£2 

w oscill. velocity. 

At the end of resonance this variable assumes the 
value £ = 1.85. 

We conclude that for a streaming cold plasma a 
consistent analytical treatment of hydrodynamic 
wave breaking can be given. 

[1] A. D. Piliya, Sov. Phys. - Tech. Phys. 11, 609 (1966). 
[2] R. C. Davidson, Methods in Nonlinear Plasma Theory, 

Acad. Press New York 1972, p. 33. 
[3] P. Koch and J. Albritton, Phys. Rev. Letters 32, 1420 

(1974). 
[4] D. W . Forslund. J. M. Kindel, and K . Lee, Phys. 

Fluids 22, 462 (1979). 
[5] J. M. Dawson, Phys. Rev. Letters 113, 383 (1959). 
[6] A. L. Peratt, Phys. Rev. A 20, 2555 (1979); W . L. 

Kruer, Phvs. Fluids 22, 1111 (1979). 
[7] D. W . Forslund, J. M. Kindel, K. Lee, E. L. Lindman, 

and R. L. Morse, Phys. Rev. A l l , 679 (1975). 
[8] Th. Speziale and P. J. Catto, Phys. Fluids 22(4), 681 

(1979). 
[9] P. Mulser, Topological Aspects of Fluid Flow and 

Hydrodynamic Wave Breaking, PLF Report 28 (1980) 
PLF Garching (to be published). 

[10] Jahnke-Emde-Lösch, Tables of Higher Functions, 
B. G. Teubner, Stuttgart 1966, 7th edition, p. 29. 

[11] H. Kull, Resonance Absorption and Field Structures 
in Laser Plasmas, PLF Report 16 (1979), PLF Gar-
ching. For steep profiles see H. Kull, Absorption of 
p-polarized light from Nonlinear Density Profiles, 
PLF Report 25 (1980), PLF Garching. 

[12] R, Fedosejevs, M. D. J. Burgess, G. D. Enright, and 
M. C. Richardson, Phys. Rev. Letters 43, 1664 (1979). 
A*o-£c-values obtained at LLL Laboratory in Liver-
more and at Rutherford Laboratory (GB) are in this 
range, too. 

[13] P. Mulser in PLF Annual Report 1980, p. 41, Garching, 
G. J. Morales, B. M. Lamb, and E. A. Adler, Effect 
of Finite Electron Drift Velocity on the Resonant Ex-
citation of a Nonuniform Plasma PPG-496, Physics 
Department, UCLA, Los Angeles, California 90024. 


